1N5719, 1N5767, 5082-3001, 5082-3039, 5082-3077, 5082-3080/81, 5082-3188, 5082-3379

PIN Diodes for RF Switching and Attenuating

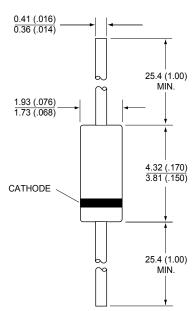
Data Sheet

Description/Applications

These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3188 is optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.


Maximum Ratings

Junction Operating and
Storage Temperature Range......-65°C to +150°C
Power Dissipation 25°C250 mW
(Derate linearly to zero at 150°C)
Peak Inverse Voltage (PIV).....same as V_{BR}
Maximum Soldering Temperature.......260°C for 5 sec

Features

- · Low Harmonic Distortion
- Large Dynamic Range
- · Low Series Resistance
- Low Capacitance

Outline 15

DIMENSIONS IN MILLIMETERS AND (INCHES).

Mechanical Specifications

The Avago Outline 15 package has a glass hermetic seal with dumet leads. The lead finish is 95-5 tin-lead (SnPb) for all PIN diodes. The leads on the Outline 15 package should be restricted so that the bend starts at least 1/16 inch (1.6 mm)

from the glass body. Typical package inductance and capacitance are 2.5 nH and 0.13 pF, respectively. Marking is by digital coding with a cathode band.

General Purpose Diodes

Electrical Specifications at $T_A = 25^{\circ}C$

Part Number 5082-	Maximum Total Capacitance C _T (pF)	Minimum Breakdown Voltage V _{BR} (V)	Maximum Residual Series Resistance $R_{_{\mathrm{S}}}(\Omega)$	Effective Carrier Lifetime τ (ns)	Reverse Recovery Time t _{rr} (ns)	
General Pur	pose Switching and	Attenuating				
3001	0.25	200	1.0	100 (min.)	100 (typ.)	
3039	0.25	150	1.25	100 (min.)	100 (typ.)	
1N5719	0.3**	150	1.25	100 (min.)	100 (typ.)	
3077	0.3	200	1.5	100 (min.)	100 (typ)	
Band Switching						
3188	1.0*	35	0.6**	70 (typ.)*	12 (typ.)	
Test	$V_{R} = 50 \text{ V}$	$V_R = V_{BR}$	I _F =100 mA	$I_F = 50 \text{ mA}$	$I_F = 20 \text{ mA}$	
Conditions	${}^{*}V_{R} = 20 \text{ V}$	Measure	$*I_{F} = 20 \text{ mA}$	$I_{R} = 250 \text{ mA}$	$V_{R} = 10 \text{ V}$	
	V _R = 100 V	I _R ≤ 10 μA	$I_{F} = 10 \text{ mA}$	$*I_{F} = 10 \text{ mA}$	90% Recovery	
	f = 1 MHz		f = 100 MHz	$*I_{R} = 6 \text{ mA}$		

Notes:

RF Current Controlled Resistor Diodes Electrical Specifications at $T_A = 25$ °C

Part	Effective Carrier Lifetime	Min. Breakdown Voltage	Max. Residual Series Resistance	Max. Total Capacitance	High Resistance Limit, $R_{\rm H}(\Omega)$		Low Resistance Limit, $\mathbf{R}_{\mathbf{L}}(\Omega)$		Max. Difference in Resistance vs. Bias
Number	τ (ns)	Voltage V _{BR} (V)	$R_s(\Omega)$	C _T (pF)	Min.	Max.	Min.	Max.	Slope, Dc
5082-3080	1300 (typ.)	100	2.5	0.4	1000			8**	
1N5767*	1300 (typ.)	100	2.5	0.4	1000			8**	
5082-3379	1300 (typ.)	50		0.4				8**	
5082-3081	2500 (typ.)	100	3.5	0.4	1500			8**	
Test Conditions	$I_F = 50 \text{ mA}$ $I_R = 250 \text{ mA}$	$V_{R} = V_{BR'}$ Measure $I_{R} \le 10 \mu A$	I _F = 100 mA f = 100 MHz	$V_R = 50 \text{ V}$ f = 1 MHz	$I_F = 0.01 \text{ mA}$ f = 100 MHz		$I_{F} = 1.0 \text{ mA}$ $I_{F} = 20 \text{ mA**}$ $f = 100 \text{ MHz}$		Batch Matched at $I_F = 0.01 \text{ mA}$ and 1.0 mA f = 100 MHz

^{*}The 1N5767 has the additional specifications: $\tau = 1.0$ msec minimum

 $I_{_{R}}=1~\mu A$ maximum at $V_{_{R}}=50~V$ $V_{_{F}}=1~V$ maximum at $I_{_{F}}=100~mA$.

Typical CW power switching capability for a shunt switch in a 50Ω system is 2.5 W.

Typical Parameters at $T_A = 25^{\circ}C$ (unless otherwise noted)

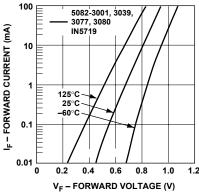


Figure 1. Forward Current vs. Forward Voltage.

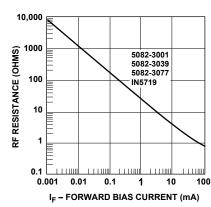


Figure 2. Typical RF Resistance vs. Forward Bias Current.

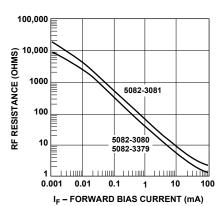


Figure 3. Typical RF Resistance vs. Forward Bias Current.

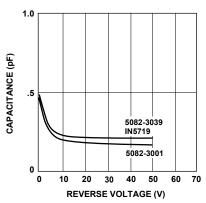


Figure 4. Typical Capacitance vs. Reverse Voltage.

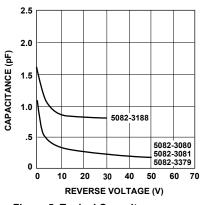


Figure 5. Typical Capacitance vs. Reverse Voltage.

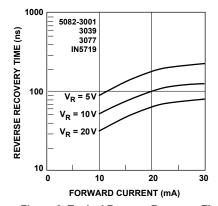


Figure 6. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

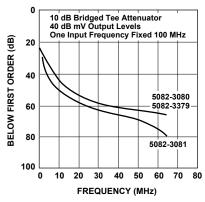


Figure 7. Typical Second Order Intermodulation Distortion.

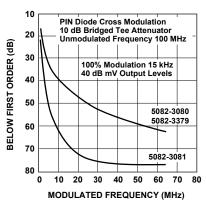


Figure 8. Typical Cross Intermodulation Distortion.

Diode Package Marking

1N5xxx 5082-xxxx

would be marked:

1Nx xx xx xx yww yww

where xxxx are the last four digits of the 1Nxxxx or the 5082-xxxx part number. Y is the last digit of the calendar year. WW is the work week of manufacture.

Examples of diodes manufactured during workweek 45 of 1999:

1N5712 5082-3080

would be marked:

 1N5
 30

 712
 80

 945
 945

Part Number Ordering Information

Part Number	No. of devices	Container
5082-3xxx#T25/1N57xx#T25	2500	Tape & Reel
5082-3xxx#T50/ 1N57xx#T50	5000	Tape & Reel
5082-3xxx/ 1N57xx	100	Antistatic bag

